Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 12: e16737, 2024.
Article in English | MEDLINE | ID: mdl-38188161

ABSTRACT

Background: The mechanical properties of muscles, such as changes in muscle tone and stiffness, are related to sports performance and injuries. Rowers are at increased risk of muscle fatigue and injury during high-repetition and heavy-load cyclic muscle actions. In view of this, the aim of the present study was to investigate the acute effect on muscle tone and stiffness, as well as bilateral muscle asymmetry, in high school rowers after a 2000-meter rowing ergometer test. Methods: Twelve young male rowers (age = 17.1 ± 0.9 years, body weight = 73.5 ± 9.7 kg) were included in the study. The data of muscle tone (frequency) and stiffness of the posterior deltoids (PD), latissimus dorsi (LD), and rectus femoris (RF) (dominant and non-dominant side) before and after a 2000-m rowing ergometer test were collected using a handheld MyotonPRO device. Results: After the rowing ergometer test, the muscle tone of dominant side PD, LD, and RF were significantly increased (p < 0.05). On the other hand, the muscle stiffness of the non-dominant side LD and RF, as well as the dominant side PD, LD, and RF were significantly increased after the rowing ergometer test (p < 0.05). The muscle tone and stiffness results showed that the dominant side PD, LD, and RF were all significantly higher than the non-dominant side after the rowing ergometer test (p < 0.05), where bilateral PD and RF exhibits moderate asymmetry (5% < symmetry index < 10%). Conclusions: After a high-intensity and high-load 2000-m rowing ergometer test, PD, LD, and RF showed increases in muscle tone and stiffness, as well as changes in the symmetry of bilateral muscle mechanical properties.


Subject(s)
Musculoskeletal Physiological Phenomena , Water Sports , Male , Humans , Adolescent , Muscle Tonus , Muscle Fatigue , Quadriceps Muscle
2.
Sci Rep ; 13(1): 16760, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37798330

ABSTRACT

Conventionally, efficiency is indirectly estimated through a respiratory gas analyser (oxygen, carbon dioxide), which is a complex and rather costly calculation method that is difficult to perform in many situations. Therefore, the present study proposed a modified definition of efficiency, called the efficiency factor (EF) (i.e., the ratio of work to the corresponding exercise intensity), and evaluated the relation between the EF and maximal oxygen uptake ([Formula: see text]), as well as compared the prediction models established based on the EF. The heart rate (maximal heart rate: 186 ± 6 beats min-1), rating of perceived exertion (19 ± 1), and [Formula: see text] (39.0 ± 7.1 mL kg-1 min-1) of 150 healthy men (age: 20 ± 2 years; height: 175.0 ± 6.0 cm; weight: 73.6 ± 10.7 kg; body mass index [BMI]: 24.0 ± 3.0 kg m-2; percent body fat [PBF]: 17.0 ± 5.7%) were measured during the cardiopulmonary exercise test (CPET). Through multiple linear regression analysis, we established the BMI model using age and BMI as parameters. Additionally, we created the PBF modelHRR utilizing weight, PBF, and heart rate reserve (HRR) and developed PBF modelEF6 and PBF modelEF7 by incorporating EF6 from the exercise stage 6 and EF7 from the exercise stage 7 during the CPET, respectively. EF6 (r = 0.32, p = 0.001) and EF7 (r = 0.31, p = 0.002) were significantly related to [Formula: see text]. Among the models, the PBF modelEF6 showed the highest accuracy, which could explain 62.6% of the variance in the [Formula: see text] at with a standard error of estimate (SEE) of 4.39 mL kg-1 min-1 (%SEE = 11.25%, p < 0.001). These results indicated that the EF is a significant predictor of [Formula: see text], and compared to the other models, the PBF modelEF6 is the best model for estimating [Formula: see text].


Subject(s)
Exercise , Oxygen Consumption , Male , Humans , Adolescent , Young Adult , Adult , Feasibility Studies , Oxygen Consumption/physiology , Exercise/physiology , Exercise Test/methods , Oxygen
3.
Int J Med Sci ; 20(1): 70-78, 2023.
Article in English | MEDLINE | ID: mdl-36619233

ABSTRACT

Background: Chest compressions are the basis of cardiopulmonary resuscitation (CPR), and high-quality chest compressions can improve survival rate in patients with out-of-hospital cardiac arrest. Although many efforts have been made to improve the quality of CPR in inexperienced adults, the results are still not high, especially during emergencies. The primary purpose of this study is to investigate whether a brief instructional chest compression-only CPR video could improve chest compression quality in inexperienced adults. Methods: One hundred adults with no CPR experience (age: 20.28 ± 2.28 years; women: 50, men: 50) participated in this study. Participants completed body composition and handgrip strength measurements, and performed two CPR quality tests on the Laerdal® Little Anne QCPR Manikin, namely without video-CPR (WV-CPR) and video-CPR (V-CPR). The WV-CPR quality test was performed first. After 2 minutes of continuous chest compression, the participants rested for 10 seconds and repeated 3 cycles (phase 1, phase 2, and phase 3). After resting for more than 72 hours, V-CPR quality test was conducted. During the V-CPR with video intervention, the participants also continued to compress the chest for 2 minutes, and then rested for 10 seconds, repeating 3 cycles. Results: In phase 1, compared with WV-CPR, the V-CPR has a significant increase (p < 0.001) in chest compression fraction (CCF) (56.31 ± 33.22% vs. 41.82 ± 32.30%) and percent of correct compression rate (PCCR) (96.17 ± 8.45% vs. 26.31 ± 37.55%). In addition, the V-CPR has significantly lower (p < 0.001) chest compression rate (CCR) (110.85 ± 2.40 cpm vs. 128.86 ± 24.52 cpm) and rating of perceived exertion (RPE) (11.89 ± 2.25 vs. 12.87 ± 2.25). For phases 2 through 3, V-CPR and WV-CPR achieved significant differences in CCF, CCD, CCR, PCCR, and RPE (p < 0.01). There were significant differences (p < 0.05) in CCF, CCD, chest compression rebound rate, and RPE among the different administration stages of both WV-CPR and V-CPR. Conclusions: The results of this study revealed that a brief instructional chest compression-only CPR video could improve chest compression quality for inexperienced adults by reducing fatigue and CCR, and increasing CCF and PCCR.


Subject(s)
Cardiopulmonary Resuscitation , Out-of-Hospital Cardiac Arrest , Adolescent , Adult , Female , Humans , Male , Young Adult , Cardiopulmonary Resuscitation/methods , Fatigue , Hand Strength , Thorax , Manikins
4.
Int J Med Sci ; 19(13): 1929-1941, 2022.
Article in English | MEDLINE | ID: mdl-36438918

ABSTRACT

The purpose of this study was to investigate whether modeling within separate body mass index (BMI) stratifications improves the accuracy of maximal oxygen uptake (VO2max) prediction compared to a model developed regardless of adults' BMIs. A total of 250 Taiwanese adults (total group, TOG) aged 22-64 years participated in this study, and were stratified into a normal group (NOG: 135), an overweight group (OVG: 69), and an obesity group (OBG: 46), according to the BMI classification recommended by the Taiwan Ministry of Health and Welfare. VO2max was directly measured on an electromagnetic bicycle ergometer. Using the participant's heart rate in the 3-min incremental step-in-place test and demographic parameters, VO2max prediction models established for four groups were TOG model, NOG model, OVG model, and OBG model, respectively. Compared with the TOG model, the OVG and OBG models had higher coefficients of determination and lower standard error of estimates (SEEs), or %SEEs. The validities of the NOG (r = 0.780), OVG (r = 0.776), and OBG (r = 0.791) models for BMI subgroups increased by 1.79%, 4.64%, and 8.22% respectively, and the reliabilities (NOG model: ICC = 0.755; OVG model: ICC = 0.765; OBG model: ICC = 0.779) increased by 3.18%, 3.27%, and 9.63%, respectively. These results suggested using separate models established in BMI stratifications can effectively improve the prediction of VO2max.


Subject(s)
Obesity , Overweight , Adult , Humans , Body Mass Index , Asian People , Oxygen
5.
Article in English | MEDLINE | ID: mdl-35010823

ABSTRACT

The maximal oxygen uptake (VO2max) prediction models established by step tests are often used for evaluating cardiorespiratory fitness (CRF). However, it is unclear which type of stepping frequency sequence is more suitable for the public to assess the CRF. Therefore, the main purpose of this study was to test the effectiveness of two 3-min incremental step-in-place (3MISP) tests (i.e., 3MISP30s and 3MISP60s) with the same total number of steps but different step-frequency sequences in predicting VO2max. In this cross-sectional study, a total of 200 healthy adults in Taiwan completed 3MISP30s and 3MISP60s tests, as well as cardiopulmonary exercise testing. The 3MISP30s and 3MISP60s models were established through multiple stepwise regression analysis by gender, age, percent body fat, and 3MISP-heart rate. The statistical analysis included Pearson's correlations, the standard errors of estimate, the predicted residual error sum of squares, and the Bland-Altman plot to compare the measured VO2max values and those estimated. The results of the study showed that the exercise intensity of the 3MISP30s test was higher than that of the 3MISP60s test (% heart rate reserve (HRR) during 3MISP30s vs. %HRR during 3MISP60s = 81.00% vs. 76.81%, p < 0.001). Both the 3MISP30s model and the 3MISP60s model explained 64.4% of VO2max, and the standard errors of the estimates were 4.2043 and 4.2090 mL·kg-1·min-1, respectively. The cross-validation results also indicated that the measured VO2max values and those predicted by the 3MISP30s and 3MISP60s models were highly correlated (3MISP30s model: r = 0.804, 3MISP60s model: r = 0.807, both p < 0.001). There was no significant difference between the measured VO2max values and those predicted by the 3MISP30s and 3MISP60s models in the testing group (p > 0.05). The results of the study showed that when the 3MISP60s test was used, the exercise intensity was significantly reduced, but the predictive effectiveness of VO2max did not change. We concluded that the 3MISP60s test was physiologically less stressful than the 3MISP30s test, and it could be a better choice for CRF evaluation.


Subject(s)
Cardiorespiratory Fitness , Oxygen Consumption , Adult , Cross-Sectional Studies , Exercise Test , Heart Rate , Humans , Oxygen
SELECTION OF CITATIONS
SEARCH DETAIL
...